
April 93

RUTGER'S CAM2000 CHIP
ARCHITECTURE*

Donald E. Smith, J. Storrs Hall,
and Keith Miyake

LCSR-TR-196

Laboratory for Computer Science Research

Hill Center for the Mathematical Science

Busch Campus, Rutgers University

New Brunswick, New Jersey 08903

*This work was supported by the Defense Advanced Research Projects Agency and the National

Aeronautics and Space Administration under NASA-Ames Research Center grant NAG 2-668.

Contents

1 Introduction

1.1 Processor/Memory performance gap

2 Functional Capability

2.1 Supported Operations

2.1.1

2.1.2

2.1.3

2.1.4

Parallel Vector Operations

Scalar-valued and vector-valued collective operations

Segmented and Unsegmented collective operations

Input/Output

3 Architecture

3.1 Timing Estimates

3.2 The Leaf Processor Component

3.2.1 The w-bit ALU

3.2.2 The 1-bit system

3.2.3 The 1-bit and w-bit system Interface '

3.2.4 Leaf and tree cell Interface

3.2.5 Leaf cell and memory interface

3.2.6 Instruction Bus Fields

3.2.7 Using the 1-bit Override feature

3.2.8 Inserting identity elements

3.2.9 Activity controlled write to memory

3.3 The Tree Processor Component

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

Control Component

Data Path component

Overflow in the Tree Component

Two Dimensional Ripple

Extended Precision

Global Operations - Hardware Implementation

1

1

3

4

5

5

6

7

9

9

10

10

13

14

14

15

15

17

19

2O

23

23

26

26

27

28

28

List of Figures

1 Rutgers CAM2000 chip Architecture 3

2 Parallel Vector Add-2 on an 8 cell CAM 5

3 Vector-valued collection operations 6

4 Right-moving Skip Shift: exclusive prefix right 6

5 Unsegmented exclusive prefix sum with identity element 0 7

6 Segmented exclusive parallel prefix sum on an 8 cell CAM 7

7 Leaf cell architecture 11

8 Comparison of the operation o and it overridden counterpart 18

9 Leaf operations for forming inclusive result from exclusive result 18

10 Using the w-bit override to form an inclusive result 18

11 leaf cell steps to complete MIN/MAX inclusive scans 19

12 Important Constants 20

13 Activity Controlled write to memory 21

14 Instruction Fields 22

15 Tree cell architecture 24

16 A Tree Cells Control Component 25

17 Computation and Communication for both phases of a plus scan 29

18 General left-to-right segment and activity 31

19 Datapath routing for up phase of a partial segmented operation 32

20 Datapath routing for down phase of a partial segmented operation 32

List of Tables

1 Technology trends for Processor and Memory Growth 1

ii

1 Introduction

This report described the architecture and instruction set of the Rutgers CAM2000 memory

chip. The CAM2000 combines features of Associative Processing(AP), Content Addressable

Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip pack-

age that is not only DRAM compatible but capable of applying simple massively parallel

operations to memory.

This document reflects the current status of the CAM2000 architecture and is continually

updated to reflect the current state of the architecture and instruction set.

1.1 Processor/Memory performance gap

Ideally a processor should be supplied with instructions and data at a rate sufficiently high

to allow the processor to execute without pause. In order to meet the demands of the

processor, memories must be large enough to contain the necessary information and fast

enough to deliver it as required. Memories technologies have been developed that support

either the size (e.g., DRAM) or the speed (e.g., SRAM) demanded by processors but there is

no available technology that supports memories that are both large enough and fast enough

to satisfy processor demands.

The need for large, fast memories has been circumvented by cleverly designed memory sys-

tems and hierarchies that employ interleaved memories, static column DRAM[Hennessy and Patterson,

and multiple level caches[Hennessy and Patterson, 1990]. These systems rely on the local

nature of information usage particular to the VonNeumann architecture to provide a memory

system that performs as though it were a single large, fast memory. They are implenmnted

hierarchically using smaller and faster caches near the processor and larger slower memories

near the main memory. The performance of such memory systems has been studied in detail

over the last 10 years[Hennessy and Patterson, 1990] with the results indicating that typical

programs produce memory access patterns with a high degree of clustering. Memory hier-

archies designed to take advantage of tlfis clustering have been able to hide the latency of

DRAM; however, current technology trends are making it unlikely that such memory systems

will be able to keep pace with the data rates required by the next generation of processors.

Table 1 summarizes the current technology trends that highlight this anticipated bottleneck.

• Processor speed is growing 75% per year

• Memory size is growing 60% per year

• Memory speed is growing 7% per year

Table 1: Technology trends for Processor and Memory Growth

As seen from Table 1, DRAM size is growing at a rate comparable to processor speed;

however, DRAM speed is growing at only one tenth this rate. Consequently, although stan-

dard memory systems will scale up in size as required, they will not scale up in speed and the

resulting lack of processor/memory data bandwidth will become a serious bottleneck that

limits system speed. However, even though DRAM speed will hold the processor/memory

data bandwidth below acceptable levels it is possible to significantly increase the proces-

sor/memory information bandwidth. This can be done by increasing the quality of the

information passed between memory and processor wlfile maintaining the same data band-

width.

The concept of increased information quality is the basis for the Rutgers CAM2000 design.

Tile design places many small processors on the memory chip allowing it to perform simple

massively parallel computations on the memory contents before forwarding the results to

the processor. For example, consider finding the average of k numbers using DRAM with a

cache-based processor. Since the addition of the k numbers can only be done in the processor,

all k numbers must be sent through the processor/memory bottleneck creating a heavy load

on this critical resource. If CAM2000 memory is used, the sum of the numbers could be

computed in the memory and then passed to the processor. In this case only one number

flows through the bottleneck: the quality of information has been increased and the load on

the critical processor/memory bottleneck has been reduced.

The CAM2000 architecture is a tree connected state machine consisting of four tightly

coupled components; tree, leaf, memory, and I/O. The tree component is composed of tree

cells organized as a binary tree. It performs global operations over data contained in the

leaf cells. In addition it provides a data path from each leaf cell to the processor's memory

bus. The leaf component is composed of leaf cells that contain one leaf processor, a bank

of local registers, one partition of the on-chip memory, and one register of a parallel shifter

that forms the I/O component. The leaf cells perform local operations on that cell's memory

partition and register set. A four leaf cell example of the CAM2000 architecture is shown in

Figure 1.

Processor Bus

[Processort

Leaf l

Cell |

input Port

I Leaf t

 Ce,,|
IMemo_I I

Input]Output I

I Processor]

Leaf I

Cell

l Memory I

L
_ Input/Output I

I t Processor I
' i

Leaf I

Cell

I Mem°ry 1

Output Port

Figure 1: Rutgers CAM2000 chip Architecture

2 Functional Capability

The Rutgers CAM2000 uses enhanced version of many classical CAM features to improve

usability and performance. Of these enhancement, the following four are critically tied to

the performance of the CAM2000 architecture:

Wide Words:

Classical CAMs have typically employed many 1-bit processors. However, in practice,

many algorithms perform better on architectures with fewer wider processors than

on architectures with more, narrow processors. The CAM2000 architecture is based

on balancing the number of processors against the width of each processor and is

parameterized to allow experimentation with alternative design points.

3

Global Operations:

Classical CAMs perform operations such as count-responders and sum-all-values in a

word-parallel bit-serial manner using software to perform tile bit-serial portion of the

computation. In practice the time required for a classical CAM algorithm is often

dominated by the software emulation of its bit-serial global operations. The CAM2000

provides hardware to perform such global operations and consequently provides the

speed of classical CAM without the overhead of software emulated global operations.

Segmentation:

Segmented operations are performed in a classical CAM model using activity control

to sequentially process one segment at a time. This approach is extremely slow since

in addition to the penalty of using software emulation, operations on the segments

nmst be performed sequentially. The CAM2000 provides hardware control that sup-

ports arbitrary segmentation over all global operations thus allowing segmented global

operations to execute in the same time as their unsegmented version.

Local addressing:

Classical CAM uses a SIMD model and operates on the same word in each leaf cell. x

The design of the CAM2000 allows the choice of words to be varied across leaf cell

thus improving the performance of expression matching and making the CAM2000

architecture well suited for lfigher-level models of computation. 2

2.1 Supported Operations

Functionally the Rutgers CAM2000 provides standard DRAM operations as well as local

vector operations, global collection operations, and parallel prefix/suffix operations. The

parallel prefix/suffix operations are similar to those reported by Blelloch's [Blelloch, 1987,

Blelloch, 1990], but the CAM2000 architecture differs from Blelloch's in the fundamental

regard that the CAM2000 architecture is a memory architecture and not a model for parallel

computation. As such, the CAM2000 focuses on implementing memory-based prefix and

suffix operations with simple, dedicated, efficient hardware.

Most operations complete in a single CAM2000 cycle, which is roughly the time required

for one DRAM memory access; however, the complexity of some primitive operations require

more than one cycle, a In addition there are a few higher level operations, such as vector-

valued collective functions, that are composed of two multicycle primitive operations. As a

group, the operations supported by the CAM2000 provide substantial algorithmic advantages

over systems that use conventional DRAM. These additional operators are described below.

1We have adopted a terminology more in line with that used in the massively parallel literature rather
than the CAM literature. In the CAM literature this sentence would read, CAM uses a SIMD model and
operates on the same field (in contrast to word) in each CAM word(in contrast to leaf cell).

2At present, we are considering several implementation alternatives to support local addressing and have
not committed to any one.

3In our design, the number of cycles for any primitive operation is bounded by a constant. Based on
estimates of year 2000 technology, multicycle primitive operations will require between 3 and 5 cycles.

2.1.1 Parallel Vector Operations

Parallel Vector operations are performed independently by each leaf cell on its local memory

partition and/or registers in a SISD manner. The Rutgers CAM2000 extends these opera-

tions in two ways. The first is to allow one of the operands to be a global value (i.e., the

same value in each cell). The second extension is the classical SIMD extension of activity

control allowing each leaf cell to be enabled or disabled o11 a per-cell per-operation basis. If

the cell is inactive the operation is ignored and state is maint_ned, if the cell is active the

operation is performed as specified. This is a important difference between CAM and simple

vector style computation.

The supported operations are: integer addition, subtraction, comparison, bitwise boolean

functions, and shift left 4. Integer multiplication, division, and floating point are not sup-

ported although they can be emulated in software.

Two examples of activity controlled parallel vector operations are shown in Figure 2.

Both examples add 2 to each CAM cell: one shows the results when all cells are enabled (i.e.,

activity=l) while the other shows the results when some cells are disabled (i.e., activity=0).

Without activity control With activity control

All cell enabled Some cells disabled

activity bit 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

input 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

result 4 5 6 7 8 9 10 11 4 3 6 7 6 9 10 9

Figure 2: Parallel Vector Add-2 on an 8 cell CAM

2.1.2 Scalar-valued and vector-valued collective operations

Collective operations are associative and belong to one of two classes, operations that return

a scalar and operations that return a vector. These operations accept their inputs from the

root and leaf cells, carry out the necessary computation, and place the final result back in

the root and leaf cells.

The supported scalar-valued collective functions are: integer sun:, max, and nfin for both

positive integer and 2's complement form. Also supported are the binary bitwise boolean

functions OR, AND, XOR as well as the bitwise selection functions left and right which route

the data of the named child (i.e., left or right) to the parent. These collective functions are

termed complete if they depend on all leaf cells or partial if they depend on a subset of leaf

cells. Participation in partial functions is determined on a per-cell per-operation basis as

determined by control bits in the leaf cells.

All scalar-valued collective functions have vector-valued counterpart that are also sup-

ported in hardware. As with the scalar-valued collective functions, the vector-valued func-

4Other shifting and byte extraction operations are being considered. Additional shifts and/or extraction
operation will be implemented based on use patterns typical of applications.

tions canbe completeor partial. In addition, The vector-valuedoperationsare partitioned
into prefix and suffix forms and independentlyinto inclusive and exclusiveforms. Prefix and
suffix forms differ in the vector's direction while inclusive and exclusive forms differ based on

the relationstfip between the i th result and the i th input 5. The CAM2000 architecture pro-

vides hardware in the tree cells that support the exclusive form of both the prefix and suffix

variant of these collective operators. Support for the inclusive forms is provided through

hardware in the leaf cells that constructs an inclusive result from its exclusive counterpart.

Figure 3 shows the four vector-valued results when the function (} with identity element ¢

is applied to the input (xl,x=,...,xn).

Input: (xl x2 • • • x,,_l x,,

Exclusive Prefix: (¢ xx

Inclusive Prefix: (Xl xl <>x2

Exclusive Suffix: (x_x3 " " <>x,, ...

Inclusive Suffix: (xl _x2 " " <>x,_ ...

 gl<>X2 "'" "'"
:EI<>X2 X3 "'"
Xn-1 <>Xn ¢

Figure 3: Vector-valued collection operations

In most cases the result of a vector-valued collective operation is obvious from its scalar-

valued counterpart; however, the scalar operations left and right have unusual vector-valued

counterparts. We term these vector-valued functions skip-shifts since they move a value

from each active leaf cell to the next active leaf cell. The time taken by this operation

is independent of the distance between active leaf ceils or the direction of the shift. An

example of an activity-controlled right-moving skip shift implemented using the exclusive

prefix operation right with identity element ¢ is shown in Figure 4.

activity bit 1 0 1 1 0 1 1 0

input 2 3 4 5 6 7 8 9

result ¢ 3 2 4 6 5 7 9

Figure 4: Right-moving Skip Shift: exclusive prefix right

2.1.3 Segmented and Unsegmented collective operations

Both scalar-valued and vector-valued collective functions can be arbitrarily segmented. The

segmentation points, like the activity, are dynamically determined on a per-cell per-operations

basis by each leaf cell. In an unsegmented collective operations the leaf cells belong to one

contiguous segment and the operation is performed as described in section 2.1.2. Segmented

5The operation is termed inclusive if result ri depends on input xi. If ri does not depend on xi the

operation is termed exclusive.

operations partition the leaf cells into independentsegmentsand perform the same oper-

ations, one on each segment in parallel. As with local operations, leaf cells specify on a

per-cell per-operation basis if their data will participate in the operation.

Two examples of an unsegmented exclusive prefix sum with identity element 0 are pre-

sented in Figure 5. 6 Both compute all partial sums, one with all cells enabled and another

with some cells disabled. A value of I in the activity bit indicates that the cell is enabled and

will participate in the computation. A value of 0 in the activity bit indicates that the cell is

disabled and will not participate in the computation. Notice that when a cell is disabled it

maintains its previous state.

All cells enabled Some cells disabled

activity bit 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

input 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

result 0 2 5 9 14 20 27 35 0 3 2 6 6 11 18 9

Figure 5: Unsegmented exclusive prefix sum with identity element 0

Segmented global operations use a segment bit in each leaf cell to deternfine if a leaf

cell is the first element of a new segment or an internal element in the current segment. If

the segment bit is 1 the leaf cell is treated as the first cell of a new segment, if it is 0 the

cell is a continuation of the current segment. Figure 6 present two examples of a segmented

exclusive prefix sum. As with the unsegmented example, one is an example without activity

control while the other is an example with activity control.

All cells enabled Some cells disabled

segment bit 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

activity bit 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

initial state 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

final state 0 2 5 9 14 0 7 15 0 3 2 6 6 0 7 9

Figure 6: Segmented exclusive parallel prefix sum on an 8 cell CAM

2.1.4 Input/Output

The CAM2000 provides simple dedicated hardware that allows I/O to be done in parallel with

all other operations. IO operations provide leaf-at-a-time word-parallel shifting independent

of activity control and segmentation. They are implemented using a single register in each

leaf cell that can function either as one element of a shift register spanning all leaf cells or

as a local register to the leaf cell in which it is contained.

6In the CAM2000 architecture, the tree nodes determine if a global operation produces a result that is
the identity element. The value of the identity element is inserted by the leaf node - the tree nodcs know

only that a result is the identity element and not the actual value of that element.

IO shift operations run asynchronously and independent of leaf operations employing a

cycle that is roughly 5 times smaller than a leaf cycle. The IO shift operations require time

proportional to number of ceils shifted across and though essentially an I/O facility can be

used to move data between leaf ceils.

3 Architecture

The CAM2000 memory architecture combines processor and memory components on a single

chip. Each chip, regardless of the amount of CAM onboard, has 4 busses: a bidirectional

data bus connected to the main processor(s), an input-only instruction bus, an input-only

I/O bus, and an output-only I/O bus. T The architecture is currently parameterized in terms

of datapath width allowing us to investigate arbitrary data-widths up to 32-bits: we believe

that by the year 2000 technology will support a 32-bit datapath CAM2000 architecture.

For a given datapath width, the chip interface is constant size and the CAM architecture is

consequently scalable in the strongest sense of the word.

Internally the chip's architecture is built around two main components: the leaf cell and

the tree cell. The leaf cells handle all local operations and interfaces to the I/O component,

the memory system, and the tree component. The tree cells function as a unit handbag

global operations and providing datapaths among leaf cells and the system memory bus.

Both leaf and tree cells are controlled by the instructions presented on the instruction bus.

3.1 Timing Estimates

We have simulated our design using an event driven gate level simulator to obtain estimates of

performance and based on these estimates we have refined the design to improve performance.

In the current design a leaf cycle requires 50 gate delays using 20 of these 50 in decoding,

routing, and other support circuitry and the other 30 for execution in the ALU. Since all ALU

operations except addition/subtraction complete in far fewer than 30 gate delays, we were

presented with several design choices including pipelining and variable time instructions. We

chose to keep the design simple and to use fixed time operations thus making the system

speed critically dependent on the time required for the ALU to perform addition. Due to

the speed and size issues constraining the addition operation we chose to use a carry-skip

circuit optimized to produce a 32-bit result along with ALLZERO and OVERFLOW status
bits in minimal time. s

The speed of tree operations is related to word width w and tree depth d. In order to meet

performance goals the tree is designed as a combinational circuit using a two-dimensional

ripple that simultaneously ripples results across words and across tree levels. This techuique

allows the tree to complete slow operations (e.g., addition, minimum and maximum) in

roughly 2w + 10d gate delays and fast operations (e.g., OR, AND, XOR) in roughly 10d

gate delays. For the CAM2000's target design of 32-bit word and 1024 leaves per chip, a

tree operation would require between 120 and 184 gate delays, including 20 gate delays for

support circuitry.

7The input and output I/O busses are opposite ends of the I/O shift register joining the leaf nodes.
SThis optimization lead to a design in which addition incurs an 8% overhead to compute ALLZERO and

OVERFLOW (i.e., the sum is available after 25 gate delays and the status bits are available 2 delays later)
while simple operations such as OR. incurred a 100% overhead (i.e., the result is available after 10 gate delays
and the status bits are available only after another 10 delays).

Again we faced a multiplicity of design choices and opted for simplicity by limiting the

time for a tree operation to an integral number of leaf cycles (i.e., 50 gate delays). However,

since the speed of the tree is critical to many applications we decide to allow tree operations

to take a variable number of leaf cycles and designed the instruction set with tree status

information that specifies, for each leaf cycle, if a tree operation is starting, continuing, or

ending. The design decision for the circuit, architecture, and instruction set provide a general

framework in which tree operations may take as few as 2 cycles or as many as required. Based

on technology trends we believe that any tree operation will require at least 2 leaf cycles and

at most 5. In our current design tree operations require either 3 or 4 leaf cycles.

3.2 The Leaf Processor Component

Each leaf cell is responsible for performing local CAM-like operations and is composed of

a main processor connected to three support processors via multi-ported interface registers:

the tree register(TR), the refresh register(RR), and the I/O register(IOR). The leaf cell's

main processor is composed of two communicating components; a w-bit system 9 for standard

operations and a 1-bit system used to manage status and control activity within a leaf cell.

Figure 7 shows the interconnection of these components.

3.2.1 The w-bit ALU

The w-bit system employs a three bus (i.e., a primary input bus GBv, a secondary input bus

GB,, and a result bus GBr) architecture and is composed of:

• a w-bit ALU containing a carry-skip adder optimized for 32 bit computation,

• five general purpose w-bit registers GRx, GR2, GR3, GR4, and GRs,

• a dual ported w-bit flag register(FR) directly coupled to the writable 1-bit registers,

• a dual ported (w+l)-bit register TR that provides the interface to the tree processor, 1°

• a tri-ported w-bit refresh register register(RR) that provides the interface to the mem-

ory, and IO processors.

• a dual ported IO register(IOR) that provides the interface between the IO processor

and the refresh register (RR).

The set of implemented operations includes AND, OR, XOR, addition, and subtraction

as well as transfer-primary and transfer-secondary. These last two instructions route the data

from the indicated input bus to the result bus. In addition to the primary and secondary

9We expect the w-bit processor and its associated registers to be 32-bits wide; however, our design is not

restricted to 32-bit widths but parameterized as a function of word width.

X°The extra 1-bit of width is used to communicate overflow information.

10

From Previous

Leaf Cell _ _._"

1

3

w-bit I
ALU _'

Status
to the

w-bit ALU^l

OVERR I DE

sel
0

To Next
Leaf Cell

OVR

Written

Statusfrom the
w-bit ALU

ALLZERO]

SIGN l]

LOB

CARRY

ALLZERO

Read by_
Tree \

Activity

control

1-blt

ALU

BB 2

AC

BB o

Figure 7: Leaf cell architecture

11

w-bit input busses there are 3 1-bit input lines: CARRY, ALLZERO, and OVERRIDE.

CARRY and ALLZERO are used for extended precision operations and allow the leaf cell to

efficiently produce results for fields wider than w-bits. The OVERRIDE allows the ALU to

efficiently handle inclusive prefix and suffix operations and provides a single-cycle test-and-

set operation.

The output of the w-bit ALU is connected to the w-bit result bus GB, and to five 1-

bit status bits: OVERFLOW, ALLZERO, CARRY, SIGN, and LOB (low order bit). 11 The

CARRY, SIGN, and LOB bits are copies of other bits computed by the ALU; the ALLZERO

bit is zero if all output bits are zero and 1 otherwise; and the OVERFLOW bit indicates if

an overflow was detected during the computation of the value on bus GBr.

All operations except addition and subtraction can be performed bit-parallel and conse-

quently require little time to complete. Addition and subtraction cannot be performed bit-

parallel and therefore require a special design to provide the desired speed. The CAM2000

architecture strikes a balance between the speed and size of the w-bit ALU by using a carry

skip adder optimized for a 32-bit result. The adder is partitioned into 9 stages sized in bits

from high order to low order as 3,4,4,5,5,4,3,2,2. The sum is available 25 gate delays after

the input is applied with the ALLZERO and OVERFLOW available 2 gate delays later (i.e.,

27 gate delays after the input is applied)) 2 In comparison, a ripple carry adder would be

over 2.5 times slower requiring at least 68 gate delays to produce an OVERFLOW indication

and an optimal speed dedicated carry-lookahead circuit would provide no more than a 14%

improvement in speed, requiring at least 25 gate delays to produce the OVERFLOW signal.

Override control

Exclusive prefix and suffix operations are performed using only the tree cells; however,

inclusive prefix and suffix operations require both the tree and leave ceils. In order to

provide efficient inclusive operations the leaf cell's w-bit ALU has been designed with all

override control. When asserted this line causes the ALU to ignore the operation specified

on the instruction bus and to execute a transfer-primary operation instead. This feature

not only provides efficient exclusive scans but can also be used as a single cycle test-and-

set operation or to support certain MUX-like operations. Sections 3.2.7 and 3.2.7 contains

examples showing the use of the Override feature.

Overflow condition

The overflow condition computed by the w-bit ALU is the standard one used for integer

arithmetic except in the case when the result is dependent OK the value in TR. This case is

exceptional since TR can contain one word of the vector-result computed by the tree cells

11At present the CAM2000 design requires the status bits to be changed on every leaf cycle. The generation
of optimized code is adversely affected by this decision and we are considering enhancing the architecture to
allow selective writing of these bits.

12In current design OVERFLOW is not available until 2 delays after the ALLZERO; however, a simple
enhancement can reduce this by 2.

12

and as such will be depend on the overflow(s)generatedby that tree operation.13 When
a leaf cell usesthe result in TR the hardware assumesthat it is finishing a computation
begun in the tree and that tile associatedoverflowcomputedby the leaf cell should reflect
the entire computation and not just the last step performedin tile leaf cell.

Consequently,the overflow condition of every leaf operation that uses TR as a source

register, including simple data movements such as GRi (----TR, is set if either TR's overflow

bit is on or if the w-bit ALU operation generates an overflows. This idea is conceptually

clean; however, the interactions between the override signal and the transfer-primary and

transfer-secondary operations make deciding if TR is a source to the w-bit ALU surprising

complex. The following boolean expression indicates when TR should be considered an input
to the w-bit ALU.

(TRp A ovr) V (TRp A OP:) '4 (TR, A OP_ A ovr')

where: TRp is true if the value of TR is on bus GBp

TR, is true if the value of TR is on bus GI3,

OPp is true if the operation is transfer-primary

OP, is true if the operation is transfer-secondary

ovr is true if the OVERRIDE line to the ALU is on

3.2.2 The 1-bit system

The 1-bit system is a four bus (i.e., BB0, BB1, BB2, AC) architecture composed of:

• a 1-bit ALU

• five general purpose 1-bit registers BR1, BR_, BR3, BR4, and BRs

• a dual ported 1-bit segment register(SEG), read by the tree nodes, that indicates if a

leaf cell is (SEG=I) or is not (SEG=0) the first element in a new segment.

• a dual ported 1-bit status register(VLDT), read by the tree cells, that indicates if the

tree component should use (VLDT=I) or ignore (VLDT=0) the data in TR.

• five 1-bit status registers(OVERFLOW, ALLZERO, CARRY, SIGN, LOB) that con-
tain the status of the w-bit ALU

• a dual ported 1-bit status register(VLD_), written by the tree nodes, that indicates if

the result computed by the tree nodes and stored in the tree register should be used

(VLD.L--1) or ignored (VLDJ.=0) by the leaf cell.

• a 1-bit constant (ONE) used to activate leaf cells

13The overflow computed by the tree cells indicates for each value produced if that value depends on any
computation that overflowed. It is stored in the extra bit of the (wW1)-bit tree register TP_.

13

Tile 1-bit systemcontrolsboth tile leaf cell's activity using line AC and, in conjunction

with the instruction bus OVR signal, the w-bit ALU's override input. The 1-bit ALU

implements all 16 2-input 1-bit functions using a 4-bit operation code with table lookup.

Three of its fourteen registers form an interface to the tree cells. Two of these, SEG and

VALT, are read by the tree cells and one, VLD_ is written by the tree cells. All three may

used as an input to the 1-bit ALU.

Five of its registers form an interface to the w-bit ALU. These registers, OVERFLOW,

ALLZERO, CARRY, SIGN, and LOB are written by the w-bit ALU as status bits and can be

read, but not written, by the 1-bit ALU. Two of these registers, CARRY and ALLZERO, can

be directly fed back to the w-bit ALU thus providing efficient extended precision operations.

3.2.3 The 1-bit and w-bit system Interface

The 1-bit and w-bit systems communicate through the processor status registers OVER-

FLOW, ALLZERO, CARRY, SIGN, and LOB, the activity control, the dedicated connec-

tions joining the 1-bit registers to w-bit register FR, and the override(OVR) signal.

Activity control is deternfined by the value applied to wire AC by the the 1-bit system

and is used to enable or disable the writing of both 1-bit and w-bit registers from their

respective output buses, GBr and BB2. The value placed on AC can be obtained directly

from any of the general purpose 1-bit registers BR1, BR2, BR3, BR4, BRs, or from special

purpose 1-bit registers ALLZERO, or ONE. In addition, the output of the 1-bit ALU (BB2)

can also be routed to AC allowing values stored in registers other than those mentioned

above, for example SIGN, to be placed on AC. In these cases the 1-bit ALU is part of the

signal path to AC and cannot, therefore, be used to perform a simultaneous independent

computatiom

The dedicated connections between the 1-bit registers and FR will provide an additional

interface that increases the bandwidth between the 1-bit and w-bit components. Currently

our design implements FR as a general purpose register and does not provide connections to

the 1-bit registers; however, the final design will introduce connections between FR and the

1-bit registers. The specific connections included will be determined by the requirements of

typical applications.

3.2.4 Leaf and tree cell Interface

The interface between the leaf and tree cells is composed of registers TR, SEG, VLDT, and

VLD.[. TR acts as a bidirectional data port connecting the leaf and tree cells. When the

tree accepts data from the leaves it reads VLDT and SEG. VLDT indicates if the data in TR

should, or should not, participate in the tree operation while SEG indicates if the leaf is, or

is not, the first in a segment. These two 1-bit registers can be read and written by the 1-bit

ALU; however, they may only be read by the tree.

When the tree provides data to the leaves it use VLD._ to indicates if the data in TR

14

should, or should not, be used by the leaf. VLD_ can only be read by the leaf processor and

can only be written by the TREE processor. There is dedicated hardware in the tree that

computes VLD.L as a function of the SEG, VLDT, and the direction of the operation type

(i.e., prefix or suffix). Changing any of these three fields will cause VLD_ to immediately

change.

3.2.5 Leaf cell and memory interface

The read and write commands form the conceptual interface between the leaf cell and mem-

ory. They are executed by the memory processor and cause data to be transferred between

RR and the memory. The read command moves data from memory to RR while the write

command moves data from RR to memory. These commands causes the memory processor

to transfer the data to or from the location specified by ADDR. If the read is destructive,

as will be the case with a DRAM implementation, the main control unit will need to issue

a write command to rewrite the contents of RR back to memory. Neither the read or write

command is affected by the processor's activity control.

Once initiated by either a read or write the memory processor performs the data transfer

asynchronously. The leaf processor should not change RR while the memory processor is

busy and is thus limited to using RR only when the memory processor is idle.

3.2.6 Instruction Bus Fields

Operation of the leaf ceils are encoded on the instruction bus in the fields described below.

The estimated width of each field is shown in parentheses. A summary of all fields of the

instruction bus is provide in Figure 14 on page 22. This description is tentative; refinements

to field size and instructions will be made as algorithms are implemented on tlfis architecture.

GOP(4):

GOP specifies the operation to be performed by the w-bit ALU.

RGBp and RGB. (3):

RGBp and RGB. specify which register will be routed to busses GB v and GB,, respec-

tively. Each field encodes one of the refresh register, one of the w-bit general registers,

the tree register, or the flag register. Our current design using 5 general registers is

encoded as follows:

000:RR 001:GR1 010:GR: 011:GR3 100:GI_ 101:GR5 ll0:TR lll:FR

RuB, (3):
RuB, specifies which register will write the value on GBr. It encodes one of a null

destination(),), a w-bit general registers, the tree register, or the flag register. The

value is recorded if and only if the leaf processor's activity control, as determined by

AC, is set. This field cannot specify the refresh register. Our 5 register design is

encoded as:

15

000:A 001:GR1 010:GR2 011:GR3 100:GR4 101:GR_ ll0:TR 111: FR

m c(2):

RRC is a 2 bit field that specifies what data, if any, is written to the refresh register.

The field encodes one of four possibilities: a hoop(A), write from GB,, write from

memory, or write from IOR. Specifying this field independent of the RGB, field allows

the refresh register to be written in parallel with any of the destinations specified by

RaB,. It also isolates the leaf processor from the memory and IO processors allowing

each to run at its own optimal speed. Activity control is used when RR is being written

from GB, - it is ignored for all other cases. Our current design encodes RRC as follows:

00: A 01: RR_GB_ 10: RR_ M[ADDR] 11: RR_IOR

ADDR(lg(n):

ADDR is a lg(n) bit field, where I1 is tile number of words of memory per leaf cell,

that specifies the memory location to be read from or written to. This field is required

only when a read or write is being performed.

WR(1):

WR is a 1-bit field that indicates when data is to be written from the refresh register

to the memory (M[ADDR] _ RR). This operation can be performed in parallel with

other operations that access the refresh register.

IOC(1):

IOC is a 1-bit field that specifies when data is written from the refresh register to the

IO register (IOR _ RR).

OVa(l):
OVR is a 1-bit field that enable or disables the override capability of the w-bit ALU.

When OVR is set the 1-bit ALU determines if the w-bit ALU performs either the

operation specified by field GOP or overrides that specification and transfer data from

input bus GBp to output bus GB_. The override capabihty is used for computing

inclusive scans from exclusive scans as well as providing MUX-like capabilities to the

w-bit ALU (see Sections 3.2.7 and 3.2.7).

BOP(4):

BOP specifies the operation to be performed by the 1-bit ALU. The 1-bit ALU is

implemented as a lookup table using using BB0 and BB1 to index the truth table

whose entries are given by the 4 bits of field BOP.

RBBo, RBB_, and RAe (3):

RBB0, RBB_, and RAc specify which register will be routed to wires BBo, BB1, and AC

respectively. Each field encodes one of 8 registers possible registers. These encodings

are based on the interrelations between the 1-bit registers and a typical instruction

16

mix. The specificregistersconnectedto eachwire and their encodingswill be altered
asexperienceis gained with algorithms on this architecture. The following aredesign
goalswhich influencethesechoicesaswell asan initial assignmentof registersto busses.

• Extended precision requires that tile CARRY and ALLZERO status outputs from

the w-bit processor be fed back into the processor's CARRY and ALLZERO

inputs. Consequently, data paths that allow parallel routing of the CARRY and

ALLZERO registers to the w-bit processor must be supported.

• Inclusive operations completed in the leaf processors nmst be efficient. 14 This is

accomplished using the 1-bit ALU, the override feature of the w-bit ALU, the

1-bit registers VLD_, and SEG with VLDI and SEG presented in parallel to the

1-bit ALU. Details of these operations are described in Section 3.2.7.

RBBo is encoded as:

000:BR2 001:BR3

Rtm_ is encoded as:

O00:BR1 O01:BR3

RAc is encoded as:

O00:BB2 O01:BRx

010:BR4 011:BRs 100:VLD T

101:SIGN 110:ALLZERO 111:VLD T

010:BR4

101:LOB

011:BRs 100:SEG

ll0:CARRY Ill:OVERFLOW

010:BR_ 011:BR3 100:BR4

101:BRs ll0:ALLZERO 111:ONE

RBB2 (3);

RBB2 specifies the register that will record the value on BB2. This value is recorded

if and only if the processor's activity control, as determined by AC, is set. Our initial

design is encoded as:

000:A 001:BR1 010:BR2 011:BR3 100:BR4 101:BRs ll0:SEG lll:VLD T

3.2.7 Using the 1-bit Override feature

Any w-bit operation can be executed as specified or overridden. When overridden, an oper-

ation is replaced by the transfer-primary operations. Figure 8 shows the operation o and its

overridden counterpart. Notice that the data transfer that replaces the specified operations

ignores the fields RGB, and GOP but uses the fields RGBp and RGB_ without alteration.

Forming Inclusive results from their Exclusive Counterparts

When an inclusive result is desired, the leaf processor nmst compute it from the TREE

component's exclusive result and its own internal data. If the operation is unsegmented with

all leaf cells participating the conversion of an exclusive result to its inclusive form is straight

forward. However, when the operation is segmented and/or has some non-participating leaf

14The current design requires at worst 2 leaf cycles to complete an inclusive operation.

17

Operation
OverriddenCounterpart

Operation Mnemonic

GI_ _-- (GRj <>GRk)

GRI _ GRj

Relevant instruction fields

RGB =j, RGB=GRk, RGB=i, GOP=o

RGB_=j, RGB, =i

Figure 8: Comparison of the operation <>and it overridden counterpart

cells the conversion is more complex. In general, the conversion is done using the override

capability of the w-bit ALU to either use or ignore the exclusive result reported by the tree

in TR.

In order to produce inclusive scans from exclusive scans two cases must be considered.

One, when the tree processor provides data on which the inclusive scan depends (i.e.,

VLD_=I A SEG=0) and two, when it does not (i.e., VLDI=0 V SEG=I). Notice that

these conditions are functions not only the VLDJ. signal produced in the tree but also of the

segmentation bit held in the leaf processor. This latter dependence is due to the fact that the

first leaf processor in a segment (SEG=I) must ignore the data it receives from the tree since

this data is from a different segment. The leaf processor must be able to distinguish between

these cases and complete the inclusive scan appropriately. Figure 9 shows instructions that

the leaf processor can execute to complete the inclusive operation <>for these two cases.

Tree data should be used GRI +- (GRj <>TR)

Tree data should be ignored GRi +-- GRj

Figure 9: Leaf operations for forming inclusive result from exclusive result

Since the second of these operations is an overridden version of the first, the choice

between the two operations can be made by controlling the override capability of the w-bit

ALU with the 1-bit ALU. Figure 10 shows the 1-bit and w-bit instructions that achieve this

result when the OVR filed of the instruction bus is set.

w-bit ALU

GI_ _ (GRj op TR)

1-bit operation

VAL_ h SEG

Figure 10: Using the w-bit override to form an inclusive result

Using the w-bit ALU as a Multiplexor for MIN and MAX operations

The override capability can also be used to cause the w-bit ALU to function as a MUX

routing one of its inputs, GBp or GB,, to GBr. This is accomplished by using OVR and the

18

1-bit ALU in conjunction with the w-bit operation transfer-secondaryasshownbelow. Since
the transfer-secondaryroutes the secondarybus to theoutput and its overriddencounterpart
routes the primary bus to the output this operation canbeusedasa multiplexor. The syntax
may seemawkward sinceit specifiestwo argumentsto a function with arity one; however,
it makes it clear that the override capability of the w-bit ALU does provide MUX-like
performance.

GRI _ transfer-secondary(GRj,GRk)
where: transfer-secondaryperformsGRi _ GRk

The ability to use the w-bit ALU asa MUX allows the leaf to efficiently form inclusive
resultsfrom their exclusivecounterparts. It is especiallyusefulfor MIN and MAX operations

because these operations are performed differently in the tree and leaf cells 15. In a TREE

cell MIN and MAX are functions that output either the MIN or MAX of their inputs but

in a leaf cell, MIN and MAX are emulated by comparing the two datum and selecting one

based on the result of the comparison. This difference requires that inclusive MIN and MAX

operations use the two steps show in Figure 11 to convert an exclusive result to an inclusive

result.

OVR field

off

Oil

GRa _ MIN(GRj,TR)

w-bit operation

_ (GRj- TR)

GtLi *--- transfer-secondary(GRj ,TR)

1-bit operation

BR1 _ (VLD_ V SEG)

_(BR1 V SIGN)

Figure 11: leaf cell steps to complete MIN/MAX inclusive scans

In the first step, while the TR is being subtracted from GRj in the w-bit processor, the

1-bit processor decides if TR's contents are required to form the inclusive result, storing this

in BR1. In the second step the 1-bit processor controls the override setting of the w-bit

processor so that it acts as a multiplexor selecting either GRj or TR and routing it to GRI.

The override condition is computed in the 1-bit ALU based on the result stored in BR1 and

the sign bit produced by the subtraction operation. GRj is selected either when the tree

data should not be used or the contents of GRj is less than TR.

3.2.8 Inserting identity elements

Tree cells perform segmented exclusive operations to which leaves selectively contribute and

must, therefore, be able to determine when a result's value is the operation's identity element.

Rather than designing the tree to insert the required identity element when needed we have

15Addition is performed identically in the leaf and TP_EE cells.

19

opted to use a single bit to indicate whether a value should be used as is or interpreted as

the operation's identity element. Consequently, when a resulting value should be interpreted

as the operation's identity element the leaf processor must insert it.

This is accomplished using the MUX-like capabilities of the leaf processor to choose

between the data provided by the tree and the identity element for the operation. Four

different constants are required to provide the identity elements for all supported tree oper-

ations. These constants in addition to other general purpose constants encoded in a 3-bit

field in which one bit specifies the high order bit, one the internal bits, and one the low order

bit. Figure 12 shows the eight possible constants and some of their uses.

0 00..00 0

0 00..00 1

0 11..11 0

0 11..11 1

1 00..00 0

1 00..00 1

1 11..11 0

1 11..11 1

Constant Use as identity General use

+, OR, XOR, positive integer MAX

2's complement MIN

2's complement MAX

AND, positive integer MIN

increment

subtract 2

decrement

Figure 12: Important Constants

3.2.9 Activity controlled write to memory

Activity control is used on all w-bit and 1-bit registers. These registers latch their input

values at the end of each execute cycle if and only if they are selected by RG m or RBB_

and AC is set. The memory system is not activity controlled and consequently there is no

activity controlled write-to-memory. However, the effect of this operation can be obtained by

using the CAM2000's standard memory operations in conjunction with an activity controlled

register operation on RR. When used with a DRAM memory performing destructive reads

this composite operation takes only slightly longer than a typical memory cycle. Figure 13

shows the three steps required to perform an activity controlled write-to-memory operation

on the CAM2000.

20

M[ADDR] _ GP_ in active leaf nodes

RR _ M[ADDR]

RR <---GRI

M[ADDR] <--- RR

mediated by AC

Figure 13: Activity Controlled write to memory

21

• TreeInstruction:

TOP(3): tree operation

LR(1): tree operation type (prefix/suffix)

UD(1): tree operation direction (up/down)

U2(1): tree operation data-type

TS(2): tree operation status (starting,continuing,stopping)

ES(2): tree operation extended status(first nibble, middle nibble, last nibble)

• w-bit Instruction:

GOP(4): w-bit operation

OVR(1): Override enable for w-bit ALU's

RGB_(3): primary argument to w-bit ALU

RCB.(3): secondary argument to w-bit ALU

RGB, (3): destination for w-bit result

RRC(2): input to refresh register

WR(1): write refresh register to memory

IOC(1): write refresh register to IO register

ADDR(lg(n)): memory address

• 1-bit Instruction:

BOP(4): 1-bit operation

RBBo(3): first argument to 1-bit ALU

RBBI (3): second argument to 1-bit ALU

RBB2(3): destination for 1-bit result

RAc (3): input to AC

Figure 14: Instruction Fields

- 22

3.3 The Tree Processor Component

The tree processor is conceptually a single large ALU that supports segmented partial scalar

and vector global operations. The processor is organized as a binary tree of identical cells

which compute locally and communicate with parent and children. The two major com-

ponents of the tree processor, control and data, are distributed throughout the tree. The

data processor is essentially a combinational circuit; however, in order to reduce circuit com-

plexity as well as provide for extended precision operations, state information is maintained

within the data component of the tree processors.

Circuit complexity is controlled by conceptually dividing the data component into two

parts and using a single component for both phases. Consequently, a parallel prefix opera-

tion, such as all partial sums, requires two passes through the tree. The first phase, termed

up, moves information up the tree storing results one per tree cell while the second phase,

termed down, uses this stored information and produces the final result at the leaf cells. The

data component is composed a w-bit ALU, three (w+l)-bit MUXes, one (w+l)-bit latch,

and several tri-state drivers. 16

The control component is purely combinational employing separate circuits corresponding

to the up and down phases of the data path. Each tree cell's control component accepts

seven 1-bit inputs and 1 encoded input that specifies the desired operation. It produces four

1-bit outputs that describe the segmentation among and participation of leaf cells in the

global computation as well as an encoded output specifying which operation the w-bit ALU

should perform. Figure 15 provides a high-level view of the interconnection between these

tree cell components.

3.3.1 Control Component

The control component of the tree processor is a purely combinational circuit distributed

across the tree cells. This component determines segmentation among and participation

of leaf cells in the global computation and uses this information to control the operation of

each tree cell's ALU.. The results are functionally dependent on the two 1-bit registers, SEG

and VLDT, in each leaf cell, and the 1-bit root register VLD_. The design of the control

component is similar in style to a carry-lookahead circuit but with the additional requirement

that the propagated signals may move either from left-to-right or right-to-left with left-to-

right propagation used for prefix operations and right-to-left for suffix operations. To avoid

confusion, the following discussion uses the term downstream and upstream to refer to the

relative location of data. For prefix operations, upstream can be read as to-the-left and

downstream as to-the-right; for suffix operations reverse these directions.

The control component is distributed among the tree cells with each cell accepting seg-

ment information from its two children and activity information from its children and parent.

Each cell produces segment information that is routed to its parent and activity information

that is routed to its parent and children. These signals are described in Figure 16.

16We expect the w-bit processor and (w+l)-bit MUXes and latches to be 32-bits and 33-bits wide, respec-

23

left right

down-suffix I

down. prefix_ _ _/_

parent

up

down- prefix

w-bit

ALU

_ t
up

ALU Control

_ (w+l)-bitMUX
0

l

parent left

(w+l)-bitlatcht_'p2

(w+l)-bit [.__efix

right

u
ap

T
Control

Component _

u a / u
al a r

Figure 15: Tree cell architecture

prefix

up

operation

24

• Input Signals:

s_' - Segment information fro:::left subtree. Signal has value 1 iff a new segment begins

in left subtree.

s_ - Segment information from right subtree. Signal has value 1 iff a new segment

begins in right subtree.

a_ - Participation information from left subtree. Signal has value 1 iff data contained

in most downstream segment of the left subtree contributes to results downstream

of the tree rooted at this node.

a_ - Participation information from right subtree. Signal has value 1 iff data con-

tained in the most downstream segment of the right subtree contributes to results

downstream of the tree rooted at this node.

d _ Participation information from parent. Signal has value 1 iff upstream data con-
ap

tributes to result in the tree rooted at this node.

prefix - Global information specifying the type of the tree operation. Signal has value

1 iff the operation is prefix, 0 if the operation is suffix.

up - Global information specifying the direction of the tree operation. Signal has value

1 iff the operation is moving data up the tree, 0 if data is moving down the tree.

operation - Global information that specifies the operation to be performed by the

tree ALU.

• Output Signals:

Sp - Segment information to tile parent. Signal has value 1 iff a new segment begins
in this tree.

a d - Participation information to the left subtree. Signal has value 1 iff data upstream

of the left subtree contributes to the result in the left subtree.

d Participation information to the right subtree. Signal has value I iff data upstreama t -

of the right subtree contributes to the result in the right subtree.

a_ - Participation information to the parent. Signal has value 1 iff data in the most
downstream segment of the tree rooted at this node contributes to results down-

stream of the tree.

ALU control - Local information that determines which function the w-bit tree ALU

performs. For unsegmented total operations (i.e., operations in which every leaf

participates) this signal is identical to the input signal labeled operation. For

partial, segmented operations this signal may override the operation specification

causing the w-bit ALU to act as a MUX routing either its left or right input to

its output.

Figure 16: A Tree Cells Control Component

25

3.3.2 Data Path component

The Data Path component is used to process, store and route tile data during tile up and

down phases. It is connected to its parent and children using bidirectional busses that

provide the pathways for the data values involved in the computation.

During an up phase it accepts inputs from its children, stores information from the

upstream subtree in its local register, and computes and outputs results to its parent. The

results output are determined by the globally specified tree operations and mediated by the

control component based on segmentation and participation information.

During a down phase the Data Path component accepts inputs from its parent and local

register, passes the upstream information confing from its parent to its upstream subtree, and

computes and outputs results to its downstream subtree. The results output are determined

by the globally specified tree operations and mediated by the control component based on

segmentation and participation information.

In the current design the w-bit ALU supports eight different functions (i.e., MIN, MAX,

SUM, AND, OR, XOR, LEFT, RIGHT,) allowing twos complement and positive integer

data types for MIN, MAX, and SUM. Of these operations, all except LEFT and RIGHT

are commutative allowing the inputs to the ALU to be presented on either input. Since

LEFT and RIGHT are not commutative they require special treatment which is provided

by a compiler or assembler. These software systems select between LEFT and RIGHT, not

only based on the user specified tree operation but also with the knowledge of the data

paths supported in the tree cell. Without this division of labor the tree cell would require a

crossbar at the input to the w-bit ALU.

3.3.3 Overflow in the Tree Component

When used in a plus-scan or plus-reduction the tree component acts as a massively parallel

processor and consequently can generate overflows within each tree cell. In order for the user

to determined if an overflow has occurred, it is necessary to provide this overflow information

both at the root of the tree and at the leaf cells. This is done by extending the data paths by

1 bit and using this line to indicate if the data associated with it has or has not overflowed.

The w-bit ALU supports this feature by ORing and its two input overflows with the overflow

produced by the ALU's computation to produce the output overflow.

Since overflow can be produced within a tree cell and since twos complement and posi-

tive integer have different overflow conditions it is necessary to either provide two separate

overflow conditions or to specify the data type for the tree operation SUM - we chose to do

the later.

tively; however, our design is not width restricted but pararneterized as a function of word width.

26

3.3.4 Two Dimensional Ripple

The efficiency of tiffs architecture is critically dependent on tile time required to move infor-

mation through the tree. The delays associated with this information movement come from

two sources, 1) the time to move information between levels in the tree, and 2) the time to

ripple information across a word within a level.

By designing the architecture to simultaneously move information both across levels of

the tree and across bits of a word, performance can be greatly improved with httle additional

hardware cost. Consider an n leaf tree (i.e., lg(n) levels) with word width w that uses ripple

carry adders in each tree cell. If information propagation is required to complete within each

word of a level before it proceeds to the next level, the time required for a SUM operation

over the entire tree is w-lg(n). If information is allowed to propagate in parallel both within

and across levels this time is reduced to w + lg(n). Supporting two dimensional ripple is

extremely simple if the only operation is SUM; however, when MIN is also supported a

design choice must be made that balances the performance of MIN against the additional

circuitry required to improve its performance.

A straight forward approach that supports the MIN function is to compare the two inputs

using subtraction and then to route the smaller to the output. However, if the SUM circuitry

is used for a subtraction based comparison, the comparison will require w time at each level

before it can output the first bit of the result. Consequently, w • lg(n) time will be required

for a MIN operation over the entire tree. This can be improved using a similar approach to

that previously mentioned for SUM; however, in this case the information ripple within a

level is from the high order to the low order bit - opposite that required by SUM.

The CAM2000 architecture implements MIN as a high-to-low ripphng function thus

enabling two dimensional ripple in the tree and reducing the time required for MIN over the

entire tree to w + lg(n) 17. In addition, and due to the representation of twos complement

and positive integer forms, MIN must be aware of the data type of its inputs. Consequently,

when the tree is asked to perform a SUM, MIN, or MAX the data type of the operation

must also be specified.

Optimal is not much better

We have compared our design choices and the resulting performance with theoretically

optimal circuits and found that our design provides an attractive balance between hardware

cost and performance. Where a straight forward approach would provide SUM, MIN, and

MAX in a time of 320 (i.e., 32-lg(1024)) our design requires a time of only 42 (i.e., 32 +

lg(1024)), while an optimal circuit would require a time of 15 (lg(32) + lg(0124)).

In addition we have considered practical circuits based on optimal asymptotic designs

(e.g. carry-lookahead and carry-free circuits) and found that our design uses significantly

less circuitry and performs nearly as well as these asymptotically optimal designs. In fact,

for values of word size and number of processors near our target design the two dimensional

17MAX has been implemented similarly and shares circuitry with MIN.

27

ripple is superiorin both cost and performanceto their optimal counterparts.

3.3.5 Extended Precision

Extended precision operations are performed using software emulation in both the tree and

leaf nodes. The leaf node uses standard techniques such as add-with-carry; however, due to

the number and organization of the processors in the collection tree specialized hardware is

required to provide efficient support for software emulation of extended precision.

This hardware is distributed throughout the tree nodes requiring each tree node to record

the status of any operations that can be extended (i.e., ADD, MIN, and MAX). Due to the

split phase nature of the tree, up-status and down-status are maintained separately. When

an extended operation is performed, each tree processor seeds itself with the status from the

previous computation and records the new status for the next computation. This approach is

similar in concept to the add-with-carry approach employed in the leaf node and combined

with the distribution of status information throughout the tree provides global extended

precision operations that are as efficient as their local counterparts.

3.3.6 Global Operations - Hardware Implementation

These operations require data to be processed in the collection tree. As previously noted,

the technique we have adopted performs a scan in two phases; an up phase during which

data is processed, stored, and propagated up the collection tree; and a down phase during

which the stored data and a value injected at the root are processed and propagated down

the collection tree.

Total Unsegmented Scan Operations

During each phase of a scan, tree cells computes two values in parallel determined by the

type of scan (i.e., up or down) and the operation broadcast to the cells. During the up phase

each tree cell stores the data from its upstream subtree in its internal register, applies the

specified operation to the data from its children, and routes this result to its parent. The

down phase works similarly; each tree cell routes the upstream data from is parent to its

upstream subtree, applies the specified operation to the data from its parent and internal

register, and routes the result to its downstream subtree.

Figure 17 provides a detailed example showing the data transmission and storage of the

two phases of an unsegmented parallel prefix exclusive PLUS operation without activity

control(i.e., all cells participate). In this example each tree cell is shown as an oval, the

value stored in a cells internal register during the up phase are shown inside the oval, values

transmitted during the up phase are represented by integers placed at the top of an edge, and

values transmitted during the down phase are represented by integers placed at the bottom

of an edge. The tree cells contain the input data used by the tree conlponent as well as the

results computed by this component. Notice that the up phase produces an output value

from the tree of 44 and that the down phase excepts an input value of 0 to the tree.

28

2

0

Input

Result

44

14

/,'

0

5

5 9

o _5

2 4

2 5 1 0

II II
Figure 17: Computation and Communication for both phases of a plus scan

29

Partial Unsegmented Scan Operations

When a partial unsegmented scan is perfornmd some leaf cells are disabled and the

computation and communication of data in the collection tree must change. One way to

accommodate this change without altering the operation of the tree ceils is to preprocess the

data in the leaf cells replacing inactive date with the tree operation's identity element. Once

this is done the tree operation can be performed as though M1 leaf cells were active. This

approach permits CAM cells to appear disabled in a partial unsegmented scan; however, it

does not generalize to allow segmented scans or operations with no identity element (e.g.,

LEFT or RIGHT). An alternative approach adopted in the CAM2000 architecture, is to

pass activity control information up and down the collection tree. This approach requires

additional hardware in each tree node but provides uniform support for total and partiM

operations as well as segmented and unsegmented operations.

Partial Segmented Scan Operations

Partial Segmented operations cover all forms of global operations. They require each tree

cell to be aware of the segment and activity relationships that exists among the input data.

For example, during the up phase of a plus scan the data arriving from the clfildren must

be added together if the children belong to the same segment but must not be added if the

children belong to different segments. The necessity for a tree cell to react to segmentation

information requires that the segment bits stored in the CAM cells be transmitted to and

within the collection tree.

This architecture implements segment computation and communication with dedicated

hardware in each tree cell. The hardware accepts segment data from its two children, com-

putes its own segment data, and passes this result to its parent. This representation provides

a common semantics for segment information across CAM and tree cells. CAM ceils store

this information in their segment bit while tree cell compute this information as the OR of

their children's segment data.

Activity information must also be propagated within the collection tree; however, in

contrast to segmentation information that only is passed up the tree, activity information

must be passed both up and down the tree. The activity information is encoded as a 1-

bit field that is conceptually attached to each data value passed in the tree. A value of 1

indicates that the data is significant and must be used in the computation while a value of

0 indicates that the data is irrelevant and should not be used.

If all scans were unsegmented, activity information could be handled in the same manner

as segment information with the exception that activity information must also be propagated

down the tree. However, segmented scans cause the computation of activity information to

be more complex. Activity information, as was the case with segment information, can be

given unified semantics that encodes activity in a single bit field indicating if the associated

data is relevant. Figure 18 shows the relationship between the activity and segment bits

for partial segmented scans. Subscripts l, r, and p denote information about the left child,

right child, and parent of a node while superscripts u and d denote whether the activity

3O

information pertains to tile up or down phase of a scan is

Figure 15 on page 24 shows the control component that communicates the segment and

activity information to a tree cell. These components compute segment and activity as

specified in Figure 18 and transmit this information as indicated by the edges of Figure 15.

The segment and activity control over the tree as a whole is determined by this hardware,

the segment and activity bits in the CAM cells, and the activity bit, a d, introduced at the

root of the collection tree. Recall that the signal prefix is 1 if the left subtree is upstream of

the right subtree and it is 0 if the right subtree is upstream of the left subtree.

,_p 81.

a_ _- prefixA [a: v (_ Aat)] v prefixAtar V(7 A_:)]

d V prefix̂ [_:V(_ ^ a_)]ald +- prefix A ap

d da, _- prefix̂ [al'V(7 ^ a_)] V prefixAap

Figure 18: General left-to-right segment and activity

Data Computation and Communication:

Once each tree cell has estabhshed its segment and activity information the data for the

corresponding operation is processed and routed. Figures ?? and ?? show the computation

performed by a TREE ceil as a function of the activity and segment information during the

up and down phases. These functions have been developed using the activity and segment

specifications to identify don't care situations which in turn have been used to reduce circuit

complexity. A careful inspection of these functions will reveal that they identify what must

be computed when a result is required but produce unpredictable, and sometimes conflicting,

values when no result is required.

Figures 18, ??, and 20 provide a complete description of how the TREE cells implement

a general left-to-right segment scan with activity control. Scans without activity control as

well as unsegmented scans are specialized version of the general scan and can be performed

by setting the CAM cell's segment and activity bit as required.

lSBoth up and down activity information are computed in parallel using combinational circuits. Only the

data paths require separate up and down phases.

31

Vi e--
vt prefix { vtvr prefix vp e-- vr

VlOYr

a-7V(si' Aprefix)
a7 V(s_ Aprefix)
ai' Aa: A((prefixA*7)V(prefix As_))

Figure 19: Datapath routing for up phase of a partial segmented operation

vp prefix V (prefix A _ f vp prefix V (prefix A-- Vr +'- / Vi ap d A a]'vI _-- vi _ d A vp_vl prefix A ap
Vp_V i prefix A ap a_'

Figure 20: Datapath routing for down phase of a partial segmented operation

References

[BleUoch, 1987] Blelloch, G. (1987). Scans as primitive parallel operations. In Proceedings of

the 15th International Conference on Parallel Processing, pages 355-362, University Park,

PA. Pennsylvania State University Press.

[Blelloch, 1990] Blelloch, G. (1990). Vector Models for Data-Parallel Computing. MIT Press,

Cambridge, MA.

[Hennessy and Patterson, 1990] Hennessy, J. L. and Patterson, D. A. (1990). Computer

Architecture A Quantitative Approach. Morgan Kaufmann, San Mateo, CA.

32

